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Shear-induced transitions in a ternary polymeric system

A. V. Zvelindovsky, G. J. A. Sevink, and J. G. E. M. Fraaije
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and Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands*
~Received 18 November 1999!

The first three-dimensional simulation of shear-induced phase transitions in a polymeric system has been
performed. The method is based on dynamic density-functional theory. The pathways between a bicontinuous
phase with developing gyroid mesostructure and a lamellar/cylinder phase coexistence are investigated for a
mixture of flexible triblockABA copolymer and solvent under simple steady shear.

PACS number~s!: 64.70.2p, 61.25.Hq, 61.30.2v, 83.50.Ax
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Various self-assembly systems such as lyotropic liq
crystals, surfactants, and block copolymers can form orde
mesophases~lamellar, cylindrical, spherical, etc.!. These
phases have received much attention because of the fu
mental interest in establishing universal laws for se
organization phenomena, and also because of the wide r
of applications in materials science@1–6#.

An interesting issue in the design of new materials is
modulation of phase behavior by external and internal f
tors such as flows@7#, reactions@8#, temperature inhomoge
neity @9#, confinements, and surfaces@10#. In particular, ex-
ternally applied shear flows are found to lead to macrosc
order in block copolymer systems. Moreover, shear int
duces a new kind of phase behavior of block copolymer s
tems, the so-called orientational phase transitions@11–14#.

So far, lamellar, hexagonal cylindrical, and cubic micel
phases of block copolymers under shear have been t
oughly investigated in experiments@1,7,12,13,15#. Theoreti-
cal understanding is partly reached for the lamellar geom
@11,16–18# and for the hexagonal cylindrical phas
@14,19,20#. Experimental observation of a sponge phase
low molecular weight surfactants under shear has been
ried out recently in@21#. Elongation of mesostructures ha
been recently found in a sheared isotropic bicontinuous p
mer phase@22#. More complex phases such as gyroid a
coexistence of phases in shear flow still require experime
examination.

Previously, computer simulations of polymer morpho
gies under shear have been carried out for lamellar and
lindrical phases in two-dimensional~2D! systems~see refer-
ences in@1#!. Recently, we have reported three-dimensio
~3D! density-functional calculations for these two phas
@23,24#. Here we report on the effect of shear on more co
plex phases—bicontinuous gyroid and lamellar/cylinder
existence in a three component copolymer system. We h
observed shear-induced transitions between these st
Many shear-induced transitions are found in experiments
theory @1#. The transitions we present here require futu
experimental and theoretical investigation.

The time evolution of the density field under simp
steady shear flow,vx5ġy, vy5vz50, can be described by
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time dependent Landau-Ginzburg type equation with a c
vective term@4,23,25# and a stochastic term@26,27#. In gen-
eral, the velocity field can be found from hydrodynamic
For a system with different viscosities of the componen
this leads to an adaption of the linear velocity profile@11#.
Such refinement is important for the description of tempe
ture dependency of the orientation of mesostructure lattic
the gradient-vorticity plane at high shear~see discussion in
@14#!. However, in the weak segregation regime, when th
are no steep concentration gradients, the basic features o
process of alignment in flow~regardless of fine details o
orientational transitions! can be described accurately by
diffusion-convection equation with an imposed velocity pr
file @18,23,24#.

In contrast to traditional schemes of polymer phase se
ration dynamics where a Landau Hamiltonian is used w
vertex functions calculated following the random phase
proximation ~see, e.g.,@1#!, we numerically calculate the
‘‘exact’’ free energyF of a polymer system consisting o
Gaussian chains in a mean field environment using path
tegral formalism@26,27#. The benefit of our approach is tha
it avoids the truncation of the free energy and therefore r
resents intermediate~metastable! states more accurately.

Some time ago, Matsen and Schick@3# introduced a pow-
erful method for self-consistent-field~SCF! calculations of
equilibrium block copolymer morphologies. Our approa
uses essentially the same free energy functional and com
ments as the static SCF calculations by providing a dyna
cal picture of the system, which is crucial for systems un
shear@4,25,28#. In our method the calculations are in dire
space, without any bias with respect to the morphology f
mation.

FIG. 1. The sample history. Arrows indicate figures with sna
shots. The box with the curve indicates a high noise region and

symbol' indicates a change in shear direction.g̃̇5Dtġ is the di-
mensionless shear rate andt is dimensionless time with time ste
Dt5b21Mh22Dt50.5 ~see@27#!.
R3063 ©2000 The American Physical Society
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FIG. 2. An isosurface ofPO blocks att52000 ~no shear!.

FIG. 3. Evolution of a detail of the bicontinuous morphology
the absence of shear att52000, 4975, 7500~from left to right!.

FIG. 4. Morphology ofPO blocks att57500 ~a! and 50 000
~b!.
FIG. 5. Orthogonal projection in thex direction of the mor-
phologies at different times:t57500 ~a!, 20 000 ~b!, 23 500 ~c!,
50 000~d!. The arrow in~c! denotes a dislocation.

FIG. 6. Detail of a perforated lamellae transformation:t
57500, 9500, 18 500~from left to right!.

FIG. 7. Free energy as function of the time for the first~a! and
the last~b! period of shear. The inset is a magnified representa
of the left plot. Arrows indicate figures with snapshots. First a
second arrows from the left correspond to starting and stopp
times of shearing~cf. Fig. 1!. The dashed line on the left grap
corresponds to bicontinuous phase evolution in the absence of s
~see Fig. 3!.

FIG. 8. 3D structure factor summed in thex direction~log scale!
for t523 500~a! @cf Fig. 5~c!#, andt550 000~b! @cf. Fig. 5~d!#.
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The system presented here is a mixture of Gaus
chainsE3P9E3 ~bead names are arbitrary! and solvent that is
parameterized to model 60% aqueous solution of a tribl
copolymer Pluronic surfactant PL64, consisting of ethyle
oxide and propylene oxide blocks (EO)13(PO)30(EO)13
with the hydrophobic block in the middle@27#. The choice is
justified by a huge variety of available experimental data
an experimental phase diagram, 60% polymer concentra
corresponds to a very complex phase coexistence re
@29#.

Figure 1 gives a schematic overview of the simulation
the system in a 3D box (64364364). The starting configu-
ration is a homogeneous distribution of the components.
system~Fig. 2! demonstrates the development of a bicontin
ous morphology with clear gyroid-type connectivity~Fig. 3!;
however, it is still without global symmetry throughout th
sample. The system can remain in this phase a very l
time, slowly rearranging the structure and keeping gyro
type connectivity@see also Fig. 7~a!#.

After applying shear (g̃̇51023) to the morphology shown
in Fig. 2, the system slowly deforms. However, the conn
tivity hardly changes: the system remains bicontinuous
similar to the morphology shown in Fig. 2 even at lar
shear strainsg.1 (100%). While shearing continues, co
nections in the system start to break, and separate piec
the structure reconnect to form a pattern aligned in the fl

FIG. 9. Detail of neck dynamics:t530 000 ~a!, 30 500 ~b!,
32 500~c!, 35 000~d!.

FIG. 10. Results of shear in thez direction, taking the morphol-
ogy as shown in Fig. 4~b! (t550 000), as starting structure. O
thogonal projections of the morphologies att550 050~a!, the end
of shear, andt554 050~b!. A longer period of shear from the sam
starting structure:t550 300 ~c!, the end of shear, and att
552 300~d!.
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direction. New structure consists of coexisting lamellae a
hexagonally packed cylindrical clusters, as shown in Fi
4~a! and 5~a!.

Stopping the shear at some point@t57500(g511), Fig.
1# leads to the reorganization of the structure via migrat
of defects~holes in lamellae, necks between cylinders!; see
Fig. 6. The time evolution of deformed and broken bico
tinuous structure involves a lot of perforated lamellar clu
ters. Migration of defects in these clusters sometimes lead
intermediate structures with a locally hexagonal-like
rangement of holes~Fig. 6, middle picture!. After long relax-
ation without shear, the structure remains a coexistenc
defected cylinders and lamellae@Fig. 5~b!# but with a better
ordering compared to the moment of stopping shear@Fig.
5~a!#. The free energy plot~Fig. 7! provides information
about which state is metastable. Bicontinuous and coex
ence states are very close in free energy value in the pla
region @Fig. 7~a!#, but the latter is slightly lower.

A second period of stronger shear (g̃̇5531023) very
quickly breaks up the remaining connections, and the sys
flows as a lamellar/cylinder coexistence without chang
lamellar/cylinder volume ratio while shear continues;t
523 500(g535), Fig. 5~c!. The lamellae have only a few
holes. The cylinder region no longer has ‘‘neck’’ defects a
the only remaining defect is a long living dislocation th
remains stable during the whole period of shearing. A
result, the hexagonally packed cylinders consist of two cl
ters with different internal hexagonal orientation@as can also
be seen from the double peaks in the structure factor,
8~a!#. After stopping shear atg535 @Fig. 5~c!# the system
relaxes to a lamellar/cylinder coexistence in which the h
agonal lattice has only one orientation@Figs. 4~b!, 5~d!, and
8~b!#. Undulated cylinders partly transform into lamellae v
formation of subsequent necks; see Fig. 9. The lame
phase still consists of perforated lamellae, with a low fract
of holes. This coexistence of phases seems to be stable
even the application of a much higher noise~V510 @27#; the
region is schematically shown in Fig. 1! does not change the
picture considerably.

Both periods of shear demonstrate that the lamellar clu
becomes larger after shear is released@Figs. 5~a!–5~d!#. This
is consistent with the fact that switching on the shear ag
squeezes the size of the lamellar region@Figs. 5~b! and 5~c!#.

The stability of the phase coexistence morphology, Fi
4~b!, and 5~d!, is challenged by applying shear (g̃̇55
31023) in the z direction ~perpendicular to lamellae
cylinders!; see Fig. 1. In Figs. 10~a! and 10~c! we see the
result of shearing for a period oft550(g50.5) and t
5300(g53), respectively. While shearing, the lamella
start to tilt and thin. The cylinders start to roll over ea
other and deform to a slightly prolate shape in cross sect

FIG. 11. Detail of structure relaxation after shearing in thez
direction att550 300~a! @cf. Fig. 10~c!#, 52 300~b! @cf Fig. 10~c!#,
54 000~c!, 56 500~d!.
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This leads to an energetically unfavorable cubic cylindri
lattice, Fig. 10~a!, or to a morphology with very oblong cyl
inders in cross section and partly broken lamellae, F
10~c! and 11~a!. Releasing shear at these different stag
leads to different phenomena. After a relatively small dist
tion of the system@g50.5; Fig. 10~a!# in short time the
system relaxes back from cubic to hexagonal packed cy
ders, keeping the lamellar cluster intact; see Fig. 10~b!. How-
ever, if shear is stopped after a larger distortion@g53; Fig.
10~c!#, then very quickly, necks form throughout the samp
see Fig. 10~d!. The structure becomes bicontinuous w
sometimes obviously gyroidlike connectivity; see Fig. 11~c!.
However, the global structure is different from the initi
morphology in Fig. 2. The process of relaxation after sto
ping shear goes via the following stages: frustrated lamel
cylinders→bicontinuous phase→lamellae/cylinders. The firs
stage is relatively fast whereas the last is slow, which can
viewed in hardly noticeable changes in structure in Fi
T.
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11~c! and 11~d!. The free energy plot@Fig. 7~b!# also dem-
onstrates that the system tends to relax back to a coexist
state. Thus in this case the bicontinuous phase is a long
ing intermediate stage with the free energy very close to
lamellae/cylinders coexistence state.

In summary, we have performed the first 3D shear sim
lation of a bicontinuousABAcopolymer/solvent system. Th
shear-induced phase transitions from the bicontinuous ph
to lamellae/cylinder coexistence and back have been
tected. These two states have very close free energy va
and can be separated by a barrier in the free energy la
scape. As a result, the polymeric system can be trappe
either of them.

A. V. Z. and G. J. A. S. acknowledge support of th
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